12 research outputs found

    Ultrawideband MIMO Channel Measurements and Modeling in a Warehouse Environment

    Get PDF
    This paper presents a detailed description of a propagation channel measurement campaign performed in a warehouse environment and provide a comprehensive channel model for this environment. Using a vector network analyzer (VNA), we explored both Line-of-sight(LOS) and Non-Line-of-sight (NLOS) scenarios over a 2-8 GHz frequency range. We extracted both small-scale and large-scale channel parameters such as distance-dependent pathloss exponent (n), frequency-dependent pathloss exponent (k), shadowing variance, and amplitude fading statistics of the channel. We also provide the clustering analysis of the channel impulse responses by using a modified Saleh-Valenzuela approach. Our model is validated by comparing the distributions of the root-mean-square (RMS) delay spread obtained from our model and measurement data, respectively. The model developed can be used for realistic performance evaluations of ultrawideband (UWB) communications and localization systems in warehouse environments

    Statistical Modeling of Ultrawideband MIMO Propagation Channel in a Warehouse Environment

    Get PDF
    This paper describes an extensive propagation channel measurement campaign in a warehouse environment for line-of-sight (LOS) and nonline-of-sight (NLOS) scenarios. The measurement setup employs a vector network analyzer operating in the 2-8-GHz frequency band combined with an 8×8 virtual multiple-input multiple-output (MIMO) antenna array. We develop a comprehensive statistical propagation channel model based on high-resolution extraction of multipath components and subsequent spatiotemporal clustering analysis. The intracluster direction of departure (DoD), direction of arrival (DoA), and the time of arrival (ToA) are independent, both for the LOS and NLOS scenarios. The intracluster DoD and DoA can be approximated by the Laplace distribution, and the intracluster ToA can be approximated by an exponential mixture distribution. The intercluster analysis, however, shows a dependency between the cluster DoD, DoA, and ToA. To capture this dependency, we separately model the clusters caused by single and multiple bounce scattering along the aisles in the warehouse. The intercluster DoD distribution follows a Laplace distribution, while the cluster DoA conditioned on the DoD is approximated by a Gaussian mixture distribution. The model was validated using the capacity and delay-spread values

    Training and Voids in Receive Antenna Subset Selection in Time-Varying Channels

    No full text
    Receive antenna selection (AS) provides many benefits of multiple-antenna systems at drastically reduced hardware costs. In it, the receiver connects a dynamically selected subset of N available antennas to the L available RF chains. Due to the nature of AS, the channel estimates at different antennas, which are required to determine the best subset for data reception, are obtained from different transmissions of the pilot sequence. Consequently, they are outdated by different amounts in a time-varying channel. We show that a linear weighting of the estimates is necessary and optimum for the subset selection process, where the weights are related to the temporal correlation of the channel variations. When L is not an integer divisor of N , we highlight a new issue of ``training voids'', in which the last pilot transmission is not fully exploited by the receiver. We then present new ``void-filling'' methods that exploit these voids and greatly improve the performance of AS. The optimal subset selection rules with void-filling, in which different antennas turn out to have different numbers of estimates, are also explicitly characterized. Closed-form equations for the symbol error probability with and without void-filling are also developed

    Optimal Weighted Antenna Selection For Imperfect Channel Knowledge From Training

    No full text
    Receive antenna selection (AS) reduces the hardware complexity of multi-antenna receivers by dynamically connecting an instantaneously best antenna element to the available radio frequency (RF) chain. Due to the hardware constraints, the channels at various antenna elements have to be sounded sequentially to obtain estimates that are required for selecting the ``best'' antenna and for coherently demodulating data. Consequently, the channel state information at different antennas is outdated by different amounts. We show that, for this reason, simply selecting the antenna with the highest estimated channel gain is not optimum. Rather, the channel estimates of different antennas should be weighted differently, depending on the training scheme. We derive closed-form expressions for the symbol error probability (SEP) of AS for MPSK and MQAM in time-varying Rayleigh fading channels for arbitrary selection weights, and validate them with simulations. We then derive an explicit formula for the optimal selection weights that minimize the SEP. We find that when selection weights are not used, the SEP need not improve as the number of antenna elements increases, which is in contrast to the ideal channel estimation case. However, the optimal selection weights remedy this situation and significantly improve performance

    Optimal Receive Antenna Selection in Time-Varying Fading Channels with Practical Training Constraints

    No full text
    Hardware constraints, which motivate receive antenna selection, also require that various antenna elements at the receiver be sounded sequentially to obtain estimates required for selecting the `best' antenna and for coherently demodulating data thereafter. Consequently, the channel state information at different antennas is outdated by different amounts and corrupted by noise. We show that, for this reason, simply selecting the antenna with the highest estimated channel gain is not optimum. Rather, a preferable strategy is to linearly weight the channel estimates of different antennas differently, depending on the training scheme. We derive closed-form expressions for the symbol error probability (SEP) of AS for MPSK and MQAM in time-varying Rayleigh fading channels for arbitrary selection weights, and validate them with simulations. We then characterize explicitly the optimal selection weights that minimize the SEP. We also consider packet reception, in which multiple symbols of a packet are received by the same antenna. New suboptimal, but computationally efficient weighted selection schemes are proposed for reducing the packet error rate. The benefits of weighted selection are also demonstrated using a practical channel code used in third generation cellular systems. Our results show that optimal weighted selection yields a significant performance gain over conventional unweighted selection

    A Novel, Balanced, and Energy-Efficient Training Method for Receive Antenna Selection

    No full text
    In receive antenna selection (AS), only signals from a subset of the antennas are processed at any time by the limited number of radio frequency (RF) chains available at the receiver. Hence, the transmitter needs to send pilots multiple times to enable the receiver to estimate the channel state of all the antennas and select the best subset. Conventionally, the sensitivity of coherent reception to channel estimation errors has been tackled by boosting the energy allocated to all pilots to ensure accurate channel estimates for all antennas. Energy for pilots received by unselected antennas is mostly wasted, especially since the selection process is robust to estimation errors. In this paper, we propose a novel training method uniquely tailored for AS that transmits one extra pilot symbol that generates accurate channel estimates for the antenna subset that actually receives data. Consequently, the transmitter can selectively boost the energy allocated to the extra pilot. We derive closed-form expressions for the proposed scheme's symbol error probability for MPSK and MQAM, and optimize the energy allocated to pilot and data symbols. Through an insightful asymptotic analysis, we show that the optimal solution achieves full diversity and is better than the conventional method

    Energy-efficient training for antenna selection in time-varying channels

    No full text
    Training for receive antenna selection (AS) differs from that for conventional multiple antenna systems because of the limited hardware usage inherent in AS. We analyze and optimize the performance of a novel energy-efficient training method tailored for receive AS. In it, the transmitter sends not only pilots that enable the selection process, but also an extra pilot that leads to accurate channel estimates for the selected antenna that actually receives data. For time-varying channels, we propose a novel antenna selection rule and prove that it minimizes the symbol error probability (SEP). We also derive closed-form expressions for the SEP of MPSK, and show that the considered training method is significantly more energy-efficient than the conventional AS training method

    Training for Antenna Selection in Time-Varying Channels: Optimal Selection, Energy Allocation, and Energy Efficiency Evaluation

    No full text
    Single receive antenna selection (AS) is a popular method for obtaining diversity benefits without the additional costs of multiple radio receiver chains. Since only one antenna receives at any time, the transmitter sends a pilot multiple times to enable the receiver to estimate the channel gains of its N antennas to the transmitter and select an antenna. In time-varying channels, the channel estimates of different antennas are outdated to different extents. We analyze the symbol error probability (SEP) in time-varying channels of the N-pilot and (N+1)-pilot AS training schemes. In the former, the transmitter sends one pilot for each receive antenna. In the latter, the transmitter sends one additional pilot that helps sample the channel fading process of the selected antenna twice. We present several new results about the SEP, optimal energy allocation across pilots and data, and optimal selection rule in time-varying channels for the two schemes. We show that due to the unique nature of AS, the (N+1)-pilot scheme, despite its longer training duration, is much more energy-efficient than the conventional N-pilot scheme. An extension to a practical scenario where all data symbols of a packet are received by the same antenna is also investigated

    Real-Time Ultra-Wideband Channel Sounder Design for 3–18 GHz

    No full text
    corecore